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Abstract 

The race to commercialize self-driving vehicles is in high 
gear. As carmakers and tech companies focus on creating cameras 
and sensors with more nuanced capabilities to achieve maximal 
effectiveness, efficiency, and safety, an interesting paradox has 
arisen: the human factor has been dismissed. If fleets of 
autonomous vehicles are to enter our roadways they must 
overcome the challenges of scene perception and cognition and be 
able to understand and interact with us humans. This entails a 
capacity to deal with the spontaneous, rule breaking, emotional, 
and improvisatory characteristics of our behaviors. Essentially, 
machine intelligence must integrate content identification with 
context understanding. Bridging the gap between engineering and 
cognitive science, I argue for the importance of translating insights 
from human perception and cognition to autonomous vehicle 
perception R&D. 

Introduction  
We are at a veritable turning point with autonomous vehicle 

perception technology. Machine intelligence is able to process 
enormous amounts of complex data simultaneously from cameras, 
lidar, and radar in a more accurate way than ever before. From a 
bird’s-eye view, autonomous self-driving vehicles have sufficient 
technical components to be deployed on our roads. Taking stock of 
major auto companies’ predictions regarding the expected year of 
self-driving vehicle deployment, we can see in Figure 1 that 
deployment is around the corner with year 2020 seeing significant 
promise [1], [2]. Furthermore, IEEE community members estimate 
75% of all vehicles on the road will be autonomous by 2040 [3]. 
 

 
Figure 1. Top ten major global auto companies’ predictions for the year of 
deployment of their autonomous self-driving vehicles on public roads. Data 
are by no means exhaustive. The word ‘predictions’ should be read with 
caution given the rapidly changing state of technologies and the complexity of 
process from announcement to actuality. 

The autonomy automakers forecast to produce as early as 2019 are 
SAE International levels 4 (high automation whereby the vehicle 
can drive itself within a limited area and under certain conditions 
with minimal human input) and 5 (full automation whereby the 

vehicle can drive itself in all roadway and environmental 
conditions without any human input) [4]. From a cognitive science 
perspective, these levels entail a sophistication in higher level 
reasoning not yet possible by machine intelligence: a capacity to 
perceive an ever-changing environment with meaning and purpose, 
to make spontaneous, new predictions based on learned and 
hypothesized expectations, and to take consequential actions for a 
future outcome. Despite such vital capacities for an autonomous 
machine to successfully maneuver from point A to point B amidst 
dynamic and unpredictable environments common to roadways, 
Uber, for example, is back on Pittsburgh, Pennsylvania’s roadways 
to continue its on-road testing after halting operations in the wake 
of a fatality [5]. Moreover, this comes at a time when self-driving 
vehicle accidents within the State of California, for example, are a 
very real problem. Figure 2 illustrates every company who has 
reported at least one accident between their autonomous vehicle 
and a conventional vehicle, some significantly more than others, 
from 2014 through the end of 2018. 
 

 
Figure 2. Companies who reported collisions on public roads in the State of 
California of their autonomous vehicle with a conventional vehicle by year. 
Data made publicly available by the Department of Motor Vehicles, State of 
California, USA. A total of 129 reports have been received as of December 21, 
2018. Reports are from the dates October 14, 2014 to December 11, 2018 [6]. 
While these reported accidents (129) across several years are small 
in number in comparison to the number of fatalities (37,133) from 
conventional motor vehicle traffic crashes on U.S. roadways alone 
during 2017 [7], they require attention in this new era of ensuing 
human-machine interaction. 
 Conventional vehicles and other unpredictable animate and 
inanimate elements common to the real world are far from exiting 
our roadways anytime soon. Success of a fully automated system 
naturally implies a solid foundation for what constitutes as safe and 
unsafe in an environment full of action, distractors, and 
unfamiliarities and a machine capable of causing damage and/or 
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death. An important element to consider in the building of relevant 
intelligent technology is the resulting human-machine interaction 
on the roadway. To dismiss it as a future problem, or not even 
consider it a factor, is to compromise safety for profitable gains. 
Damaged property and/or a death/deaths should not be acceptable 
in the name of possible life-saving technology of the future. As 
suggested by a few, clear and agreed upon criteria for global 
standards of safety validation beyond a brute-force approach of 
road-test driven miles must be determined now at all levels of the 
testing process, be they closed-course, simulation, on-road, and 
human-tended systems [8]. 

The appeal for solid safety measures comes at a critical 
moment in this human-machine reality and in the most recent 
acknowledgement here at the Autonomous Vehicles and Machines 
2019 conference in Burlingame, California that the near future is 
more about deploying SAE International levels 2+ (or 3-) with a 
driver having some sort of role –most likely remotely– than levels 
4 or 5. As initially put forward in [9], human-machine interaction 
is a relationship to be significantly brought to the forefront if the 
threefold gold standard of efficiency, effectiveness, and safety is to 
be met with these new highly intelligent vehicles on our roadways. 
To put it bluntly, these self-driving vehicles will need to be able to 
deal with humans’ rule-breaking and/or erratic behavior as well as 
other environmental unknowns at all times and under all sorts of 
conditions on the spot, be they urban, suburban, and/or weather 
related. The self-driving vehicle cannot just simply stop operating 
or operate but incompetently towards a negative outcome because 
programmed rules in the self-driving vehicle were breached by the 
human driver in their conventional vehicle and left unchecked in 
the self-driving vehicle’s algorithms for unpredicted if-then cases 
[10] that did not happen to occur, for example, during the millions 
of miles it was test-driven. 

In [9] I made the theoretical argument that collaborative 
musical improvisation within live theatre is cognitively analogous 
to driving a vehicle in a densely populated and chaotic area like a 
big city. Moreover, I advanced the claim that cognitive research in 
such area of human creativity [see [11], [12], and [13] for 
experimental details] is useful for translation in other areas. My 
main point –drawn from the assumption of an inevitable 
collaborative relationship between humans and SAE International 
levels 4 and 5 machines-to-be on roadways and elsewhere– was a 
call for multidisciplinary action to merge insights from human 
cognition and behavior like online decision-making, emotion 
perception, risk prediction and management, and spontaneous 
collaborative negotiation with vehicle perception R&D to improve 
machine intelligence outcomes. Continuing in that vein, I begin my 
argument for this paper with the following: we must make it a 
R&D priority to understand and integrate into machine intelligence 
what we currently know –and could know more of– in regards to 
our ability to recognize, identify, anticipate, and utilize that of 
meaning to us in a sea of multi-sensory information. Unraveling 
the full potential of human perception and cognition is perhaps our 
closest bet to dealing with so-called edge cases and overall “what 
if” scenarios resulting from human behavior and/or in-the-moment 
landscape/environmental changes. It is by no means an easy feat to 
answer the biggest conundrums of human intelligence. But if we 
unify our intellectual efforts and financial resources, my bets are 
all on for answering them sooner and more effectively. 

I will not attempt to fully cover and answer such aspects of 
human intelligence and why, for example, the human brain is so 
efficient at what it does –there are more than sixty years of 
dedicated ink to such vastly loaded questions since Cognitive 

Science’s birth as a discipline in 1956 [14]. Instead, I will 
emphasize what I believe are fundamental questions and open 
challenges we must commit to resolving if we want to create fully 
functioning SAE International level 5 autonomous vehicles and to 
delineate a more defined path for safety metrics. 

What We Have and What Is Missing 
Sometimes it seems as though each new step towards AI, 
rather than producing something which everyone agrees 
is real intelligence, merely reveals what real intelligence 
is not [15]. 

 
The advent of the Internet and consequent exponential rise of 

data and data types has afforded impressive advancements for 
artificial intelligence (AI) since the “AI winter” of the 1990s. 
Current core machine intelligent technologies classify and identify 
things. For example, they can distinguish between cat faces and 
human bodies [16] and label dogs by their breed [17]. Moreover, 
they can beat humans at quite complex strategic games as chess 
[18], Jeopardy [19], and Go [20] –all very clear and well-defined 
environments and good examples of narrow intelligence. The 
colored schematic boxes in Figure 3 summarize where we are 
generally. Starting with machine learning, AI learns from past 
behaviors and events to predict what might happen in the future. 
Robotics has most recently been focusing on reinforcement 
learning that uses rewards as feedback with robots learning tasks 
by trial and error to avoid resets between task episodes and to 
introduce a more efficient approach to task performance [21] –
techniques similar to our own behaviors. Classification is quite 
sophisticated now as enormous amounts of collected sample data 
with any number of characteristics productively lead to an 
outcome. Natural language processing has also greatly improved. 
Translation is no longer purely dependent on word by word 
matching as it was done in the past. Rather, it is progressively 
moving towards the use of large corpora of real-life conversational 
human-translated data and automated data collection, annotation, 
and analysis [22]. 

 

 
Figure 3. Schematic summary of core AI technologies available today. 
As mentioned, machine vision is quite good with image 
recognition. However, egregious errors persist and discriminating 
between basic comparative characteristics like same-or-different 
between patterns and objects is still exceedingly difficult for the 
algorithms [23]. Furthermore, there are glaring cases where deep 
neural networks can easily be fooled into identifying a turtle as a 
rifle [24] and misclassifying a Stop sign as another target like 
Speed Limit 45 [25], for example, with systematized 
transformations of pixels in the digital image or with physical 
perturbations to real-world objects, respectively. The success of 
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such adversarial examples in causing significant targeted 
misclassification raises serious questions regarding the need for 
and development of resilient learning algorithms for real-world 
self-driving vehicle situations. Moreover, they highlight the 
weakness of an argument like quantity of test-driven miles as a 
measure of confidence for safety when an unforeseen scenario of 
this kind –with perhaps a very low probability of likeliness but 
with an existent probability– can easily mislead the system not for 
better but for worse. If not obvious before, these errors are clear 
reminders that vision, whether object recognition or scene 
navigation more broadly, is much more than just the detection of 
low-level visual features. In fact, advancing further my main 
argument for this paper, we are at the cusp of a much-needed 
change of approach to automated vehicle perception R&D if full 
automation is to be achieved. 

Lastly, improvements have also been seen with speech 
recognition. Though still restricted to specific tasks and with lags, 
free-form speech translation capabilities are moving forward [26]. 
Still a long way to go, however, is when the computer will be able 
to perfectly decode a dictated talk irrespective of a speaker’s 
regional accent or to not auto-correct incorrectly amidst the code 
switching common to multi-linguals’ discourse in multiple shared 
languages; another example where content identification and 
context understanding will be paramount for reaching human-like 
intelligence for speech recognition and free-form collaborative 
narrative discourse. From these successes, failures, and open 
questions, a pattern arises of what is fundamentally missing: 
Despite using hundreds or thousands of available training data and 
evermore powerful deep-learning systems with up to 152 layers 
[27] requiring yet greater hardware capacity, AI systems continue 
to lack knowledge, awareness, common sense, and the ability to 
form and extract meaning and value from context, let alone to 
pursue a changing goal with intent. In essence, machine learning is 
still incapable of dealing with new and unknown situations because 
previously acquired knowledge cannot be generalized and/or 
transferred from one domain to another to adapt to an ever-
changing environment. 

To See and Know Is Human 
As a result, the ultimate fundamental question is: how do we 

humans integrate bottom-up sensory processing with top-down 
knowledge processing to perceive what we perceive in the world 
and move about our business. For illustrative purposes let us 
dissect the image in Figure 4 to underscore how important top-
down knowledge information is to our perceptual experience of the 
photograph and any preceding hypothetical insights processed, 
were behavioral action to ensue in the real world. Why this 
particular image? The reversed, reflected duplication of the blue-
yellow doors/panels on the horizontal axis suggests a mirrored 
floor. Does the room have a mirrored floor? Further inspection of 
the still-visible titled floor near the farthest vanishing point –odd to 
have such a break on a smooth mirrored surface– suggests an 
encroaching waterline to an almost completely flooded room. Is 
the room flooded? Lack of a single ripple of movement (of the 
supposed water), however, a slightly airborne-looking divan 
against the left panel, a seemingly endless wall height, and shifted 
doors/panels’ height between the actual and the reflected images 
create a cognitive dissonance between low-level visual feature 
perception, situational reality, and real-world expectations. The 
reflection seems off… Is this a real room? Was the reflection 
artificially created with Photoshop? Would one enter or not enter? 
Et cetera, et cetera. 

 
Figure 4. Color film photograph of a seemingly flooded room. Shot with a 
Seagull Twin-Lens Reflex camera using a single exposure and a mirror. 
Scanned negative was not digitally altered, only dust spots were removed 
using Photoshop. Image is part of a photographic series by the author on 
visual illusions titled ‘E/Il-lusive Spaces.’ 

A single static scene (and dynamic scene by consequence) 
engenders a host of parallel visual low-level and high-level feature 
and contextual reasoning (in no one particular order): specific and 
general identifications and classifications of local and global scene 
features, juggling of expectations, hypotheses tested, focused 
attention shifted accordingly to local scene features, expectations 
revised, and so forth. In other words, human vision amounts to a 
highly complex bidirectional feedforward-feedback process 
significantly influenced by contextual elements like focused 
attention, world knowledge expectations, and perceptual tasks as 
surrounding scene elements affect the perceptual quality of local 
features and global scene characteristics affect neurons’ responses 
to local features [28]. All of this to call attention to what computer 
vision algorithms must be able to mimic in regards to melding 
mental representations of individual objects and evaluating their 
role within the scene as a whole to make meaning out of an image 
–let alone a dynamic stream of images– and not be thrown off 
course due to added physical perturbations on objects in the 
environment. By further implication, this processing becomes 
critical to successfully steer a vehicle through a sea of new 
environments and human agents with their own sets of hypotheses, 
expectations, implications, etc. and ability to process multiple 
pieces of information, focus attention appropriately, and produce 
the relevant behavioral action. I second Sebastian Thrun’s remark 
–without the ‘almost’ and with an emphasis on ‘is’– that 
“…artificial intelligence is almost a humanities discipline. It’s 
really an attempt to understand human intelligence and human 
cognition” [29]. 

Accidents: Insights from A Glaring Problem 
To continue the discussion on higher-order mental processing, 

it is imperative to address the topic of human error. Although 
expansively complex and multi-layered with many running 
definitions [30], human error can be generally defined as “…a 
generic term to encompass all those occasions in which a planned 
sequence of mental or physical activities fails to achieve its 
intended outcome, and when these failures cannot be attributed to 
the intervention of some chance agency” [31]. Developing 
taxonomies of error is an ever-evolving task and one I will not 
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discuss here. However, a particular type of error of significant 
relevance to understand within the conventional vehicle-fully 
autonomous vehicle (i.e. human-machine) relationship is that of 
‘mistakes.’ Mistakes are particularly interesting in regards to their 
characterization of occurring at earlier stages of information 
processing and determined to be the result of either incorrectly 
assessing a stimulus or inadequately selecting an appropriate 
response [30]. I bring this topic to the forefront under the 
assumption that identifying and understanding the cognitive 
processes that lead to a mistake or an error more generally can 
provide valuable insights towards building appropriate measures 
for future prevention. As such, looking at available statistics for the 
attributed reasons in conventional motor vehicle crash data and the 
types of traffic accidents involving autonomous vehicles and 
conventional vehicles can support both the need for highly desired 
autonomous vehicle intervention and the need for clearly defined 
metrics for autonomous vehicle safety as well as underscore the 
computational requirements for achieving such safety. 

According to the National Highway Traffic Safety 
Administration (NHTSA)’s National Motor Vehicle Crash 
Causation Survey conducted from July 2005 to December 2007 
and released in 2018, 94% of an estimated 2,046,000 crashes 
throughout the US were attributed to driver-related errors [32]. 
Moreover, 41% of those crashes were attributed to a recognition 
error and 33% to a decision error. “Driver’s inattention, internal 
and external distractions, and inadequate surveillance” were 
classified as recognition errors and “driving too fast for conditions, 
too fast for the curve, false assumption of others’ actions, illegal 
maneuver and misjudgment of gap or others’ speed” were 
classified as decision errors [32, p.2]. All other driver-related 
errors had much lower rates with 11% due to performance (e.g. 
overcompensation, poor directional control), 7% to non-
performance (e.g. sleeping on the wheel), and 8% to other kinds 
not specified [32]. As the data lack specification regarding the 
number of kinds of errors within an attributed category, the 
attributed error type and resulting crash type, and the factors 
leading to the error type in the first place, a cognitive analysis of 
the situation is anyone’s best guess. One can extrapolate, however, 
that the two most significant types of errors observed reveal three 
important elements that directly inform the driving experience: (i) 
the driver’s level of focused attention to the task at hand of driving, 
(ii) the driver’s perceived characterization of self in relation to her 
environment, and (iii) the driver’s active role as a spontaneous 
decision-maker as hypotheses, beliefs, and assumptions of others’ 
behaviors are assessed. 

With respect to focused task attention, studies on multitasking 
during driving, for example, reveal both positive and negative 
effects on driving performance with such effects significantly 
depending on driving circumstances (e.g. no traffic vs. substantial 
traffic) and secondary task types (e.g. listening to the radio vs. 
using a tablet) [33]. In regards to the (mis)perceived 
characterization of self in relation to one’s environment and the 
good or bad decisions made in the moment, understanding what 
went cognitively wrong, so-to-speak, is murky territory as it would 
at least first depend on the driver’s self-reporting directly after an 
accident, if at all even possible. Any number of miscalculations on 
the part of the driver can occur as the result of either an individual 
mental event or a conjunction of mental events of the following 
kind: distance from the vehicle in front; distance of turn from 
origin point; reaction time to braking or speeding; control of 
vehicle’s speed and arc of road curvature; length of road curvature; 
familiarity with the roadway; trust in vehicle’s response to one’s 

actions; meaning of the acceleration/deceleration, maneuvering 
patterns, light signals, honking, facial/hand/finger movements, etc. 
of other drivers; others’ intentions; others’ reaction abilities; 
others’ driving habits; etc. While not all encompassing, 
considering such possible mental events emphasizes just how 
complex every driver’s cognitive environment is during driving 
and suggests a complexity to be expected with the introduction of 
autonomous driverless vehicles on roadways made for humans and 
their conventional vehicles.  

Turning a critical eye to the success rate of current 
autonomous vehicles leads us to accident reports. As shown in 
Figure 2 above, driverless vehicle accidents within the State of 
California in the United States are not to be disregarded when 
every company listed has reported at least one accident since 2014. 
Accident statistics on testing data from September 2014 to March 
2017 reveal a very significant kind of reported collision [34]: 
fender-benders with a conventional vehicle hitting the autonomous 
vehicle from behind. Not surprisingly, most of the damage to the 
self-driving vehicle was 62% of the time to the rear, followed by 
23% to the side, and 15% to the front. Consequently, as the 
conventional vehicle hit the self-driving vehicle, damage was 
significantly less. Moreover, 89% of reported accidents happened 
at an intersection. Additionally, a review of all 75 reported 
collisions for the year of 2018 (January 2 to December 11) reveals 
that out of the 46 vehicles in autonomous mode 52% were rear-
ended by a conventional vehicle and out of the 29 vehicles in 
manual mode 28% were rear-ended by a conventional vehicle; 
whereby conventional vehicle refers to car, motorcycle, or bicycle. 
While not addressed in [34] but making a connection between the 
conventional motor vehicle crash causation data in [32] mentioned 
above and the possible mental events involved also described 
above, the following picture results: an intersection –much like 
being on the yield-and-merge lane to enter the highway or on the 
highway itself– gives rise to a vastly complex cognitive situation 
of a human driver in a conventional vehicle with a host of 
expectations about the vehicle in front and behind of them and an 
adverse consequence resulting from the poor interaction between 
the human in their conventional vehicle and the autonomous self-
driving vehicle due, in part, to the lack of strategic, decision-
making intelligence from the part of the autonomous self-driving 
vehicle. If these relatively innocuous fender-benders are occurring 
at intersections, one can just imagine the kind of paralysis possible 
in highly dense, changing, and unprogrammable urban 
environments. 

A misconstrued argument to this dissection of human error is 
that it suggests the very opposite of what fully autonomous vehicle 
driving hopes to deliver one day: that making autonomous self-
driving vehicles to drive like humans is to create equally faulty 
results and propagate erroneous and dangerous behaviors. I by no 
means advocate creating machines equally as fallible, chaotic, 
and/or unpredictable as humans when it comes to driving and 
human lives and environmental awareness (in the domain of AI 
and artistic creativity that is another argument). What I am 
highlighting with this discussion is that we must understand better 
from a cognitive perspective the when, where, and why of human 
driving behaviors and integrate the various resulting insights to 
create autonomous systems capable of dealing with such behaviors 
until the day when fully autonomous vehicles are the only 
machines whatsoever operating on our roadways and such human 
matters become inconsequential. 
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Cognitive Principles To Consider 
In the meantime, there are still various human perception and 

cognition factors to understand and mimic in autonomous 
driverless vehicle software. As mentioned earlier in regards to our 
breakdown of the image in Figure 4, for every feedforward 
connection there is a reciprocal feedback connection that carries 
information about the behavioral context. This reinforces the 
actuality that human perception and cognition is a cycle of 
interaction. Perceptual information directly guides our decisions 
and actions and shapes our beliefs just as internal knowledge, 
expectations, attention, and working memory influence the way we 
perceive the world. Perception and cognition are interdependent 
and failure to integrate the two results in an incomplete system for 
true human-machine interaction to succeed because one biological 
system, us, remains intelligently superior to the other synthetic 
system, the machine. Currently, this is what we have if we make a 
computational analogy to our perception and cognition. Computer 
vision systems follow a linear feedforward process whereby 
information has a one-way flow through the layers of the network 
and even with supervised and unsupervised deep learning we do 
not know exactly how the system is learning. Rule extraction 
algorithms are being proposed for neural networks to explain their 
decision-making, but they are still in their infancy [35]. The point 
being that our visual system does not follow a visual cortical 
hierarchy in which information is conveyed in a single, 
feedforward manner to progressively higher levels in the hierarchy. 
How then can we expect a new digital system with linear 
feedforward flow to successfully see and know similar to an 
organic cognitive system like ourselves that took millions of years 
to evolve as such? We cannot. And brute-force training of systems 
on hundreds and thousands of training data until the systems 
eventually learn –somehow– is not the answer. 

When testing computer vision algorithms to compare 
randomly generated black and white shapes as same or different 
within the same visual space, the algorithms were no better than 
chance at recognizing the appropriate relationship [23]. Such a 
result underscores the fact that computers only identify a collection 
of pixels that have similar patterns to collections of pixels they 
have “learned” to associate with particular labels and are incapable 
of discriminating where one object in the image stops and the 
background, or another object begins. Current computer vision 
systems, additionally, cannot deal with the following placement of 
unusual objects within a scene. As shown in a recent study where 
the image of an elephant was inserted within a typical-looking 
living room scene, the system started misidentifying and 
misclassifying all the other objects it had previously correctly 
identified as well as the elephant itself [36]. This has significant 
consequences, for example, for the adversarial inputs mentioned 
earlier which are successful precisely because the vision system 
does not have world knowledge of object and categorical 
constancy across time and context and does not engage in a 
constant loop of increasingly complex feedforward-feedback 
cognitive processing. How then do we build resilient learning 
algorithms for real-world autonomous driverless vehicle 
situations? 

I believe the answer lies in taking a multidisciplinary 
approach, one espoused by the field of cognitive science whereby 
insights and methods from neuroscience, psychology, philosophy, 
anthropology, linguistics, and computer science are integrated in 
its fundamental goal to reverse engineer the mind/brain. 
Furthermore, it means significantly moving away from reductionist 
methods common to machine learning research and asking the 

bigger question of humanity: general not narrow intelligence. 
Consider the hallmarks of human intelligence. Overcome by 
computers in speed, accuracy, and precision, we continue to 
surpass computers in our capacity to generalize, learn, and 
manipulate and integrate multiple streams of known and novel 
information. Zooming into the issue of data efficiency, one of the 
biggest challenges in Cognitive Science is modeling how our 
minds do so much cognitively despite minimal amounts of 
information. More specifically, what allows for a human infant to 
only need a single example or very few examples of a cat, for 
example, to correctly deduce the next animal or object she 
encounters is a cat or not a cat? In comparison, a deep learning 
algorithm needs hundreds if not thousands of labeled training 
examples to correctly identify a cat and even still, be susceptible to 
radical misidentification upon minute pixel changes or real-world 
added perturbations. Part of the answer lies in our ability to 
generalize or efficiently extract key fundamental attributes within a 
category and compare and contrast those attributes against those of 
a novel object to determine its status within the pre-identified 
category. We can see this quite easily in Figure 5 where the new 
chair object at the bottom center is identified as a type of chair 
because it shares many core categorical chair properties with the 
other chairs shown. Classic studies with adults and children have 
revealed that when shown a particular nonce object called a “tufa” 
amidst a set of nonce objects, both adults and children correctly 
categorize and identify all the “tufa” objects in the set [37]. 
 

 
Figure 5. Six different kinds of chairs that all fall under the category of a ‘chair’ 
because of shared attributes such as a backside, a seat area, and a set of 
legs, irrespective of the shape and size of those attributes. Sharing such 
properties, the chair object bottom center is thus categorized as a ‘chair.’ 

Scene representation much like we analyzed in Figure 4 is a 
wonderful example to illustrate our ability to dynamically integrate 
many different computations in real-time and flexibly transform, 
alter, and change mental representations to deal with incoming 
information. Accurate scene perception is a highly complex state 
of multi-level processing that includes low-level processing of 
simple environmental properties, mid-level processing of object 
identification and extraction, and most crucially, high-level 
processing of meaning whereby expectations of the world as 
determined by knowledge and past experience directly influence 
the what and how of low and mid-level processing [38]. As we 
have already seen, visual processing is so critical to how we 
understand and navigate our world that any intelligent system that 
is detecting and categorizing objects on the street must be able to 
do the same so not to hallucinate a squirrel crossing a road when it 
was in fact a human. Again, this is all importantly tied to our 
knowledge about the world and how inanimate things and animate 
beings work, or common sense. In an image of a standing elephant 
and a basketball on the floor next to an open doorway used to 
illustrate the power of common sense in deducing truths about 
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objects, it is absurdly obvious to us that the elephant, no matter 
how much it wiggles around, simply cannot fit through [39]. The 
consequent question arises: how is this abstract knowledge 
acquired and how does it guide learning and inference from 
infancy to adulthood? The answer is unsatisfactory and an open 
challenge within the field of Cognitive Science. Nativists who 
stand in contrast to a tabula rasa viewpoint postulate innate 
structures that facilitate model building. Connectionists who view 
mental phenomena as interconnected networks postulate learned 
representations. More recent modelers postulate hierarchical 
Bayesian models that rely on multiple levels of hypotheses with 
priors on priors. 

To end, I will briefly mention the fruits of three interesting 
examples of cross-disciplinary R&D experimentation which I 
believe set up a very constructive path towards achieving models 
of general intelligence. The first pertains to CAPTCHAs or 
completely automated public Turing tests to tell computers and 
humans apart. The example in Figure 6 spells out CAPTCHA! and 
the symbols are effortlessly readable despite differing textures and 
the incomplete and cluttered symbolic representations. On closer 
inspection, the symbols illustrate the various principles of grouping 
known as Gestalt laws and are easily identifiable (closure, 
similarity, continuation, figure and ground, and proximity). Or 
perhaps they are not easily identifiable. Without knowledge of the 
philosophy of mind from experimental psychology to understand 
the laws behind the meaning we make from perception, the 
symbols are just a string of letters and represent nothing more. The 
main point emphasizing that context is key. 
 

 
Figure 6. An example of a CAPTCHA that consists of the symbols C A P T C 
H A !. The symbols are composed in such a way to illustrate the following 
Gestalt principles of perception: the incomplete C to represent closure, the 
first and second appearance of A to represent similarity, the connected P to 
represent graphic continuation from A, the 3D H to represent figure and 
ground with the appearance of windowed arches, and the overall lack of 
spacing between CAPTCHA! to represent proximity of symbols and thus, 
using top-down knowledge of the meaning of CAPTCHAs, represent an actual 
English language acronym. 

We seamlessly integrate the bottom-up sensory information of 
lines and curves with our top-down knowledge of written letter 
representations and flexibly and dynamically identify and 
categorize transformed letters as we individuate one letter from 
another and its background. Incorporating theoretical principles 
from cognitive science about the mind/brain to build software, 
researchers have successfully moved many steps ahead of 
traditional deep-learning approaches. Using an object-based 
recursive cortical network (RCN) model, they have created a 
human-like generative model that successfully breaks text-based 
CAPTCHAs and uses 300-fold less training data [40]. 
 The second example pertains to the feature-binding problem 
in vision. In this particular domain the question is: how does the 
visual system represent hierarchical relationships between and 
within features (e.g. edges, objects). In other words, how does the 
visual system represent which low-level features belong to the 
doors/panels, divan, floor, and walls in Figure 4 we so fluidly 
segmented from one another in order to make sense of the scene? 

Incorporating acknowledged neural dynamics from neuroscience, 
researchers have significantly moved forward our understanding of 
how we make sense of our visuospatial world that relies on the 
emergence of polychronization, or the phenomenon in which a 
subpopulation of neurons fire in regularly repeating spatio-
temporal patterns in response to specific visual stimuli. 
Significantly, neurons embedded within these polychronous 
neuronal groups receive convergent inputs from neurons 
representing lower- and higher-level visual features and they 
appear to encode the hierarchical binding relationship between 
features [41]. The crucial point here being that such semantically 
rich, hierarchal visuospatial representation is key for the brain to 
make sense of its sensory world and behave intelligently within it. 

The third and final example is facial recognition. How does 
the brain process and recognize the myriad array of faces we see 
every day? Combining functional magnetic resonance imaging, 
single-cell recording techniques in macaques, and twenty years of 
research on face recognition, researchers have recently cracked the 
neural code for how faces are identified in the brain [42]. They 
identified about 200 neurons that are functionally specialized to 
distinguish facial features along specific axes in face space like the 
distance between eyes, hairline shape, face width, skin tone, 
texture, among others, and that neuronal response is proportional 
to the strength of the features. In other words, a strong response 
results from a large inter-eye distance but a minimal response to a 
small inter-eye distance. Essentially, these 200 neurons can 
combine in different ways to encode every possible face. The 
resulting model was used to accurately re-create faces monkeys 
were viewing. The implications for now modeling how the brain 
processes non-facial shapes and object recognition at large is an 
avenue ripe for investigation. 

Conclusions for Yesterday 
Once again, the critical question underlying this discussion 

resurfaces: what do we want (and need) to create at the end of the 
day? A machine that is like us? A machine that is like us but better 
(and better in what ways)? An entirely other kind of thing meant to 
enter our world for us to passively accept? An entirely other kind 
of thing meant to be part of our world and complement us? 

As a cognitive scientist, business executive, and consumer, I 
propose the following if the auto industry wants a real competitive 
advantage in the business of AI: (1) It is time to restructure the 
challenges of creating efficient, effective, and safe autonomous 
systems and answer the following questions: What exactly does the 
industry want these autonomous vehicles to do? How does the 
current technology fit, in cognitive terms, with its ability to interact 
with us humans? What elements of human cognition do we need to 
integrate now within these systems to improve the outcomes of 
their intervention and eventual integration within our lives? To 
change goals ad-hoc as an industry from robo-cars for all to robo-
service in closed-course, sunny areas simply because the reality of 
computer vision intelligence looks bleak for fast profits, at least in 
the near future, is to undermine the potential ahead. 

(2) It is time to re-evaluate priorities within the industry. I 
agree with decreasing the thousands of deaths due to traffic 
accidents. I agree with decreasing traffic congestion to provide 
greener traffic options. I agree with democratizing mobility for a 
more equitable economy. And I agree with maximizing efforts 
towards building the software and hardware necessary for the 
growth of such complex systems-of-systems interaction required 
for autonomous vehicles. But the ultimate goal is human benefit 
for human survival, for environmental health. Human benefit will 
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not result from prioritized commercialization and advertised false 
hope if the industry does not move ahead in a judicious manner. I 
have argued in this paper that we need to significantly integrate the 
various strengths in our understanding of human cognition, 
behavior, and neurology with computer engineering and 
consequent software and hardware development. I am appealing 
specifically to a change in how the industry deals with the 
limitations, and in some cases hazards, of current computer vision 
systems. 

(3) Lastly, to move forward with changed priorities it is time 
to promote a paradigm shift in automated vehicle R&D and overall 
start-up culture within the industry. Cognitive Science is, in simple 
terms, aiming to reverse-engineer the human mind/brain. Today is 
to see and know, not just to see. The foundation to move toward 
new, much more advanced intelligent systems is in place. But the 
industry needs to delve deeper and faster into the biggest questions 
of human cognition and merge old, new, and yet-to-be-discovered 
insights regarding how we categorize, learn, think, problem-solve, 
and make decisions to move beyond the acquisition of thousands 
of training data points, tweaking of deep learning approaches, and 
rise of hardware problems to keep up with the massive amounts of 
unlabeled, accumulated data. Cognition is as much a part of the 
computational, mechanistic, ethical, legal, and infrastructural 
aspects of making autonomous vehicles a scaled, integrated reality 
within society. Cognitive scientists need to have a seat at the table 
alongside engineers, ethicists, lawyers, and policymakers. 

Ponder the problem this way. We stand before a bifurcated 
path of our own design. Are our most recent developments in 
machine intelligence a boon to humanity or a threat? Know the 
future we cannot. But imagine it we can. Machine intelligence, 
about sixty plus years old, is completely incapable of hoping, of 
dreaming, of transforming the known into the unknown –2.5 
millions years of human evolution have helped to achieve these 
unique cognitive abilities on which our very existence as a species 
so greatly depends. So consider your duty as a citizen of humanity 
resolved and know that the time is more than ripe to participate in, 
dialogue and engage with others towards a more sustainable and 
equitable path ahead. 
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